
The .NET Architecture

Objectives

“Microsoft .NET is based on the .NET Framework, which consists of
two major components: the Common Language Runtime (CLR)
and an extensive set of Framework Class Libraries (FCL). The
CLR defines a common programming model and a standard type
system for cross-platform, multi-language development.”

• CLR-based execution
• Application designs

CLR-based execution…
Influences
• .NET is the result of many influences…

.NET

OOP JVM

GUI
Web

component-based
design n-tier design

.NET is multi-language

• .NET supports VB, C# (C-sharp), C++, J# (Java 1.2), Eiffel, etc.

code.vb code.cs code.cpp ...

Development Tools

app.exe

FCL

.NET is cross-platform

• Compiled .NET apps run on any supported platform:

APP.exe

?
Win64 Win32

(XP,2K,98)
WinCE

How is cross-platform achieved?

• Cross-platform execution realized in two ways:

1. apps are written against Framework Class Library (FCL), not
underlying OS

2. compilers generate generic assembly language which must be
executed by the Common Language Runtime (CLR)

(1) FCL

• Framework Class Library
– 1000's of predefined classes
– common subset across all platforms & languages
– networking, database access, XML processing, GUI, Web, etc.

• Goal?
– FCL is a portable operating system

(2) CLR-based execution

• Common Language Runtime must be present to execute code:

APP.exe

other FCL
components

CLR

JIT Compiler

obj code

OS Process

Underlying OS and HW

Core
FCL

Implications of .NET's execution model

1. Clients need CLR & FCL to run .NET apps
– available via Redistributable .NET Framework
– 20MB download
– runs on 98 and above, NT (sp6a) and above

2. Design trade-off…
+ managed execution (memory protection, verifiable code, etc.)
+ portability:
– slower execution?

Application design…
Monolithic
• Monolithic app: all source code compiled into one .EXE

– *not* the norm on Windows…

APP.exe

Component-based

• Component-based app: .EXE + 1 or more .DLLs

– standard practice on Windows…

compute.dll

data.dll

GUI.exe

Why component-based?

• Many motivations:
– team programming
– multi-language development (I like VB, you like C#)
– code reuse (e.g. across different .EXEs)
– independent updating (update just component X)

• FCL ships as a set of components!

Assemblies

• .NET packages components into assemblies
• 1 assembly = 1 or more compiled classes

– .EXE represents an assembly with classes + Main program
– .DLL represents an assembly with classes

Development Tools

assembly

code.vb
code.vb

code.cs

.EXE / .DLL

CLR-based execution revisted

• CLR must be able to locate all assemblies:

.EXE

other FCL
assemblies

CLR

JIT Compiler

obj code

OS Process

Underlying OS and HW

Core FCL
assembly

.DLL.DLL.DLL

obj code
obj code

obj code

Assembly resolution

• How does CLR find assemblies?

• For now, simple answer is sufficient:
– our DLLs must reside in same directory as our EXE
– FCL assemblies reside in GAC
– CLR looks in GAC first, then EXE's directory…

GAC?

• GAC = Global Assembly Cache
– C:\Windows or C:\WinNT directory

• Observations:
– explorer yields a flat view of GAC
– command-shell yields actual representation
– GAC can hold different versions of the same assembly
– some assemblies have been pre-JIT ("native image")
– tamper proof via digital signatures…

Summary

• .NET architecture is:
– multi-language
– cross-platform
– based on the CLR, FCL, and JIT technology

• Application designs are typically multi-tier
• Application designs yield component-based development

– .NET components are packaged as assemblies

